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This paper is motivated by the behavior of the heat diffusion kernel pt(x) on a
general unimodular Lie group. Indeed, contrary to what happens in Rn, the Pt(x)
on a general Lie group is behaving like t&$(t)�2 for two possibly distinct integers
$(t), one for t tending to 0 and another for t tending to �, namely d and D. This
forces us to consider a natural generalization of Lorentz spaces with different
indices at ``zero'' and at ``infinity.'' � 1996 Academic Press, Inc.

0. Introduction

0.1. Let G be a C� connected manifold and H=[X1 , ..., Xk] be C�

vector fields on G. We shall say that the system H satisfies the Ho� rmander
condition or H is a Ho� rmander system if together with their successive
brackets [Xa1

, [Xa2
, [ } } } Xas] } } } ]] they span at every point of G the

tangent space of G (see [1]).
Now let l(t) # G, 0�t�1 be an absolutely continuous path on G such

that

l4 (t)=dl \ �
�t+= :

k

j=1

aj (t) Xj (a.e. t # [0, 1]).

Setting |l |=�1
0 [�k

j=1 |aj (t)| 2]1�2 dt for two points x, y # G, we define

d(x, y)=dH (x, y)=inf[ |l | : l(0)=x, l(1)= y], (0.1)

where the inf is taken over all the paths that satisfy the above condition.
It is well known that d( } , } ) is a distance function on G which induces the
canonical topology on G (see [2, 3]).

0.2. Let G be a connected Lie group and g its Lie algebra generated
by a Hormander system of left invariant vector fields. We define
Bt=[x # G : d(x, e)<t], the ball of radius t contered at the point e # G.
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Also we define the volume of Bt as V(t)=+(Bt), where + is a left invariant
Haar measure on G.

0.3. It can be proved that there exists a number d # N and a constant
c>0 s.t.

C&1td�V(t)�ctd, 0<t<1 (see [4]).

This d is called the local dimension or the dimension at ``zero'' and it
depends on the choice of the vector fields. On the other hand according to
the well-known theorem of Y. Guivarc'h either there is D>0 and c>0 s.t.

C&1tD�V(t)�ctD, t�1,

or there are c1 , c2>0 s.t. V(t)>c1 ec2 t, t�1. Note that in the case t�1, c
depends only on G and not on the choice of vector fields (see [5]).

Remark. In the first case we say that G is of polynomial growth and it
has dimension at infinity D. In the second case we say that G is of exponen-
tial growth and its dimension at infinity is D=+�. In the special case of
simply connected nilpotent groups we have d�D.

0.4. Suppose pt(x, y) is the fundamental solution of the equation
(���t+2) u=0, where 2=�k

j=1 X 2
j and Xj is as in subsection 0.1.

The potential operator 2&a�2 is defined by a convolution operator as
follows:

2&a�2f =| Ka(x, y) f ( y) dy, (0.4.1)

where

Ka(x, y)=|
�

0
t&a�2&1pt(x, t) dt. (0.4.2)

2&a�2 can also be defined as the negative fractional powers of 2 by spectral
theorem (see [6]).

0.5. Recently N. Varopoulos has proved the following theorem (see [7]).

Theorem. Let G a connected Lie group of polynomial growth and H a
left invariant Ho� rmander system on G. Then 2&a�2 is a bounded operator
from L p tp Lpn�(n&ap) iff d�D, n # [d, D], l< p<+�, and 0<ap<n.

The above is noting more than a generalization of the classical Hardy�
Littlewood theorem on Rn (see [6]). This classical theorem has another
generalization due to R. Hunt (see [8]) which is connected with convolu-
tion operators on Lorentz spaces on Rn. In this paper we propose to
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generalize Varopoulos' theorem in the context of the Lorentz space on the
groups that are adapted to the different behavior of pt . These Lorentz spaces
need two different sets of indices, one pair for the zero and one for infinity.

0.6. Let f be a scalar valued function defined on a measure space (G, +).
We define the distribution function of f, *f ( y)=+[x # G : | f (x)|> y]. With
each function f we associate the rearrangement function of f, f *(t)=
inf[ y>0: *f ( y)<t, t>0].

Definition. The Lorentz space Lq1 q2
p1 p2

is the collection of all f such that
& f &

q1 q2
p1 p2

<�, where

& f &
q1 q2
p1 p2

=

\q1

p1
|

1

0 \t1�p1 f *(t)q1
dt
t +

1�q1

+\q2

p2
|

�

1
(t1�p2 f *(t)+

q2 dt
t +

1�q2

,

p1 , p2 , q1 , q2<�
sup
t<1

t1�p1 f *(t)+sup
t>1

t1�p2f *(t), q1=q2=�

\q1

p1
|

1

0
(t1�p1 f *(t))q1

dt
t +

1�q1

+sup t1�p2 f *(t), q2=�

sup
t<1

t1�p1 f *(t)+\q2

p |
�

1
(t1�p2 f *(t))q2

dt
t +

1�q2

, q1=�.

It is easy to see that Lqq
pp=L( p, q) , the known Lorentz spaces, and L pp

pp=Lp ,
the Lebesque spaces. Moreover, if p1< p2 Homstedt's formula for the
K-functional of the pair (L( p1 , q1) , L( p2 , q2)) at t=l is exactly the quasi-norm
of the space Lq1 q2

p1 p2
(see [9, 10]).

Here we must mention a similar device which has been used for Besov
spaces, for the same reason, in [11].

0.7. We are now in a position to state the main theorem of this paper.

Theorem 0. Let G be a unimodular nonactomic connected Lie group
and f a scalar-valued function on G. Then the potential operator 2&a�2 is a
bounded mapping from Lq$1 q$2

p$1 p$2
to Lq1 q2

p1 p2
, where

1
p1

=
1
p$1

+
1
p"1

&1,
1
p2

=
1
p$2

+
1
p"2

&1,
1
q1

=
1
q$1

+
1
q"1

�1

1
q2

=
1
q$2

+
1
q"2

�1, p"1�
1

d&a
, p"2�

1
D&a

, 1<q, q2 , q$1 , q$2<�

1< pi , pi$, p"i<�, i=1, 2, ...

If G has exponential volume growth then p"2�1�(N&a).
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0.8. In Section 1 of this paper we give an inequality that holds for
Lorentz spaces as well as the topological properties of these spaces. In
Section 2 we give two interpolation theorems analogous to Marcinkiewicz
(weak-type) and Riesz�Thorin (strong-type) interpolation theorems. In the
Section 3 we prove a convolution theorem which has as its corollary
Theorem 0. Finally, I express my gratitude to Professors N. Varopoulos
and G. Alexopoulos for their invaluable help in the preparation of this
paper.

1. Inequalities and Topological Properties

1.1. The functional f � & f &qs
pr is not always a norm, even when

p, q, r, s�1. We can turn Lqs
pr into a normed space, as in Lorentz spaces

Lp, q , if we replace f * with the maximal operator of f *, say f **, in the
definition (0.6), for 1< p, q, r, s��. Recall that f **(t)=(1�t) �t

0 f *(s) ds,
t>0, and it is known that f *� f **.

So, setting & f **&qs
pr=| f | qs

pr we can say that the normed space Lqs
pr consists

of all functions f, defined as in (0.6) for which the quantity | f | qs
pr is finite,

since the following result holds.

Proposition 1.1. If 1< p, r�� and 1�q, s�� then

& f &qs
pr�| f | qs

pr�c & f &qs
pr .

In particular (Lqs
pr , | f | qs

pr) is a normed space.

Proof. The first inequality is an immediate consequence of the defini-
tions of the quantities & f &qs

pr and | f | qs
pr and the fact that f *< f **. The

second follows from Hardy's inequality. Since f � f ** is subadditive, the
triangle inequality for | f | qs

pr follows immediately from Minkowski's
inequality. For more details see [8, 9].

1.2. Let P be the family of all operators P=Ps of the form Pf =Xs } f,
where S is any measurable set of measure 1, Xs denotes the characteristic
function of S, and f is as in (0.6). Let A be the set of all sequences
A=[An]n # N of pairwise disjoint measurable sets each of measure 1 and for
each such A let QA be the operator of ``shifted'' conditional expectation
QA f =�n �An f d+ } XAn+1. Let Q be the family of all such operators. Since
QA f is a step function, its decreasing rearrangement is a step function of
the form (QA f )* (t)=�j�1 bj X(t)[ j&1, j] , 0<t��, because +(Aj)=1.

Note that [bj]j�1 is the decreasing rearrangement of the vector [ai]i�1 ,
where ai=�Ai f d+, supposing, without loss of generality, that f is a non-
negative function. In the sequel we will prove a proposition which is the
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key proposition for the study of the Lqs
pr spaces. This enables us to deduce

some properties of Lqs
pr spaces immediately from those of the Lpq spaces.

Moreover this observation enables the interpolation theorems of Section 2
required in this paper to be deduced almost immediately from those of
Hunt for Lorentz spaces. We assume that all measure spaces throughout
the paper are nonatomic.

Proposition 1.2. If 1< p, r, s, r��, and f # Lqs
pr then and only then

Pf # Lpq and Qf # Lrs for all p # P and Q # Q. In particular the norm in Lqs
pr

is equivalent to supP # P &Pf &pq+supQ # Q &Qf &rs and the supremum is
attained to within some fixed multiplicative constant for some suitable
choices of P and Q.

Proof. First we will show that (QA f )** (t)� f **(t), t�0. To obtain
this result it suffices to show that

|
t

0
(QA f )* (s) ds�|

t

0
f *(s) ds, for all t�0. (1.2.1)

The above formula is also an immediate consequence of two very standard
facts in interpolation theory which can be found in [10], namely
Theorem 5.2.1 (p. 109) in the case p=1 and Eq. (8), p. 41. (Obviously QA

maps L p into L p with norm 1 for p=1 and p=� so we have M0=M1=1
in that equation.) But

|
t

0
(QA f )* (s) ds=|

t

0
: bj X(s)[ j&1, j] ds=|

1

0
b1 ds+|

2

1
b2 ds+ } } }

+|
t

[t]
b[t]+1 ds

�|
B1

f d++|
B2

f d++ } } } +|
B[t]

f d+

+|
t&[t]

0
( fXB[t]+1)* (s) ds (V)

since

|
t

[t]
b[t]+1 ds=(t&[t]) |

B[t]+1
f d+�(t&[t])( fXB[t]+1)** (+(B[+]+1))

�|
t&[t]

0
( fXB[t]+1)* (s) ds
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because f ** is a decreasing function, where [t] symbolizes the integral
part of t.

It is also known that if (M, +) is a finite nonatomic measure space, f a
positive function on M, and * any number satisfying 0�*�+(M ) then
there is a measurable set E* , with +(E*)=* such that �E* f d+=�*

0 f *(s) ds.
Using the above, relation (V), and the fact that +(B[t]+1)=1 we obtain

|
t

0
(QA f )* (s) ds�|

B1 UB2 UB[t] UEt&[t]

f du�|
t

0
f *(s) ds

for t>0. Note that Bj is the domain of the integral bj . Moreover

\s
r |

1
0

(t1�r(Qf )* (t))s dt
t +

1�s

=b1=\q
p |

1

0
(t1�p(Qf )* (t))q dt

t +
1�q

�\q
p |

1
0

(t1�p(Qf )** (t))q dt
t +

1�q

�\q
p |

1

0
(t1�pf *(t))q dt

t +
1�q

�\q
p |

1

0 \t1�p 1
t |

t

0
f *(s) ds+

q dt
t + .

Using Hardy's inequality we have

\s
r |

1

0
(t1�p(Qf )* (t))s dt

t +
1�s

�c \q
p |

1

0
(t1�pf *(t))q dt

t +
1�q

or

&Qf &rs�c & f &qs
pr . (1.2.2)

Now suppose t < 1; then f *(t) = inf[* : +[ | f | > *] � t � 1] �
inf[* : +[ | fxs|>*]�t<1]=( fXs)* (t), where +(S)=1. So

\q
p |

1

0
(t1�pf *(t))q dt

t +
1�q

�\q
p |

1

0
(t1�p(Ps f )* (t)q dt

t +
1�q

(1.2.3)

for every set S of measure 1.
Furthermore if one chooses A� n=[x # G : f *(n&1)�| f (x)|� f *(n)],

n�1, and we put A� =[A� n]n # N and a� i=�A� i f d+ we have

(QA� f )*(t)= :
i�1

a� i X(t)[i&1, i] , t>0
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and

f *(i )�a� i� f *(i&1), i # N.

So

\s
r |

n+2

n+1
(t1�rf *(t)s dt

t +
1�s

�c \s
r |

n+1

n
(t1�r(QA� f )* (t))*

dt
t +

1�s

.

By a change of variables we deduce

\s
r |

�

1
(t1�rf *(t))s dt

t +
1�s

�c &QA� f &rs . (1.2.4)

Also, if A� 1=[x # G : | f (x)|> f *(1)] it is easy to see that

\q
p |

1

0
(t1�pf *(t)q dt

t +
1�q

=sup
p#P

&Pf &pq . (1.2.5)

Combining relations (1.2.2), (1.2.3), (1.2.4), and (1.2.5) we obtain the
desired result.

1.3. The next result shows that, for any fixed p and r. the Lorentz space
Lqs

pr increases as the upper exponents q and r increase; i.e., there are
inclusion relations among Lqs

pr spaces, with q and s varying, like those for
the Lebesgue spaces or Lorentz spaces Lp, q .

Proposition 1.3. Suppose 0<p, r��, 0<q1�q2<�, and 0<s1�
s2��. Then & f &q2 s2

pr �c & f &q1 s1
pr , where c in a constant depending on p, r, qi

and si , i, 1, 2. In particular, there is the embedding Lq1 s1
p, r � Lq2 s2

p, r .

Proof. The proof follows directly from the fact that Lorentz spaces Lp, q

increase as the secondary exponent q increases and by Proposition 1.2.
Inclusion relations among Lqs

pr, with p and r, are like those for the
Lebesgue spaces L p and Lorentz spaces in that they depend on the
structure of the underlying measure space. The upper exponents are not
involved. Thus, if 0< p1� p2��, 0<r1�r2��, and 0<q, r��, then
Lqr

p2 r2
� Lqr

p1 r1
on finite measure spaces. The above is an immediate conse-

quence of the properties of the Lpq spaces and the fact that on a finite
measure space Lqs

pr=Lpq .

1.4. In the sequel of this section we will give some topological proper-
ties of Lqs

pr spaces. It is easy to see that Lqs
pr spaces equipped with the func-

tional e( f, g)=| f& g| qs
pr are metric spaces since [( f +g)** (t)]r�

[ f **(t)]r+[ g**(t)]r, 0�r�1. So it can be proved that the Lqs
pr spaces,
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equipped with the metric e, are complete spaces. Moreover if r=1, e is a
norm. This norm is applicable to the Lqs

pr spaces when 1< p, r�� and
1�q, s��. Hence we can conclude the following result.

Proposition 1.4. If 1< p, r�� and 1� p, s�� the Lqs
pr spaces are

Banach spaces for any measure space (G, +).

Before proceeding to the interpolation theorems of this paper, let us
determine the conjugate spaces of the Lqs

pr spaces, which will play a
particularly important role in the convolution theorems cited in the final
section of this paper.

1.5. We proceed two propositions.

Proposition 1.5.1. The space L�
p1

�
p2

is the conjugate space of L1, 1
p$1 p$2

,
where 1�p1+1�p$1=1�p2+1�p$2=1 and f and g on (G, +).

Proof. (a)

& fg&1=|
G

| fg| d+�|
�

0
f *(t) g*(t) dt=|

1

0
f *(t) g*(t) dt

+|
�

0
f *(t) g*(t) dt

=|
1

0
t1�p$1g*(t) t1�p1 f *(t)

dt
t

+|
�

1
t1�p$2g*(t) t1�p2 f *(t)

dt
t

�sup
t<1

t1�p$1g*(t) |
1

0
t1�p1 f *(t)

dt
t

+sup
t�1

t1�p$2g*(t) |
�

0
t1�p2 f *(t)

dt
t

+sup
t<1

t1�p$1g*(t) |
�

0
t1�p2 f *(t)

dt
t

+sup
t<1

t1�p$2g*(t) |
1

1
t1�p1f *(t)

dt
t

=&g&�
p$1

�
p$2

& f &1
p1

1
p2

.

(b) Define m(s)=l(xs), where Xs is the characteristic function of
the set s, m(s) is a measure, and |m(s)|�Bi &Xs&

1
p1

1
p2

=Bi (+(s))1�p$1, where
i=1 if m(s)<1 and i=2 if m(s)�1. l is a continuous linear functional
in Lqs

pr and |l( f )|�B & f &qs
pr for every f # Lqs

pr . Hence m is absolutely
continuous with respect to +. Then the Randon�Nikodym theorem (see
[14]) gives a function g(x) such that m(s)=l(Xs)=�s g(x) d+ and hence
�G g(x) f (x) d+�B & f &1

p1

1
p2

\f # Lqs
pr .
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Setting f (x)=[exp(&i arg g(x))] Xs we obtain �s | g(x)| d+�
B[ +(s)]1�pi . Therefore

1
+(s) |S

| g(x)| d+�Bi [m(s)]&1�pi$�Bi t&1�pi$.

It follows that g**(t)�B1 t&1�p$1 if t<i. So g # L�
p$1

�
p$2

and & f &1
p1

1
p2

�B.
Note that the inverse is not expected as in Lebesgue spaces or in Lorentz

spaces Lpq .

Proposition 1.5.2. The conjugate space of Lq1 q2
p1 p2

is Lq$1 q$2
p$1 p$2

, where

1
p1

+
1
p$1

=
1
p2

+
1
p$2

=
1
q1

+
1
q$1

=
1
q2

+
1
q$2

=1

and

1< p1 , p2 , q1 , q2<�.

Proof. Let f # (Lq1 q2
p1 p1

)*. Since & f &q1 q2
p1 p2

�c& f &1
p1

1
p2

, L # (L1
p1

1
p1

)*; hence
there exists g # L�

p$1
�
p$2

such that l( f )=�G f (x) g(x) d+, \f # L1
p1

1
p2

(V).
Using the fact that |l( f )|�B & f &q1 q2

p1 p2
it can be shown that g # Lq$1 q$2

p$1 p$2
and

(V) holds for every f # Lq1 q2
p1 p2

. Conversely, for any g # Lq$1 q$2
p$1 p$2

, (V) defines a
continuous linear functional on Lq1 q2

p1 p2
.

2. Interpolation Theorems

2.1. We next wish to prove two interpolation theorems which are
generalizations of the interpolation theorems of Marcinkiewicz and
Riesz�Thorin. Both theorems are useful for the convolution results which
will be shown in Section 3. Before proceeding to the theorems we will give
some definitions concerning operators which are involved in the theorems
that follow.

Definition 2.1.1. An operator T mapping functions on a measure
space into functions on another space is called quasi-linear if T( f +g) is
defined whenever Tf and Tg are defined and if |T( f +g)|�k(T( f )+T( g))
a.e., where k is a constant independent of f and g.

Definition 2.1.2. An operator T, as in Definition 2.1.1, is called
sublinear if whenever Tf and Tg are defined and c is a constant then
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T( f +g)+T(cf ) are defined with |T( f +g)|�|Tf |+|Tg| and |T(cf )|=
|c| |T( f )|. Note that it follows | |Tf |&|Tg| |�|T( f&g)|.

2.2. Let f # Lqs
pr so Pf # Lpq and Qf # Lrs , where Pf and Qf are as in

Proposition 1.2. By definition of Pf we have that Pf # Lqs
pr and by relations

(1.2.1) and (1.2.2) we have that Qf # Lqs
pr . Now let u be a function defined

on the domain of f and taking values in [0, 1]. It is easy to see that if
Qf # Lrs then uQf # Lrs and hence uQf # Lqs

pr . Suppose A� =[An]n # N as in
the proof of Proposition 1.2 and u(x)=0 if x # A1 and u(x)= f (x)�a� if
x # A� n+1. Since f } XAn+1

� f *(n)��An f d+ we see that u(x)�1, provided
that f # L1(An) for all n. From these we have the following result.

Proposition 2.2.1. Any non-negative function f in L1+L� can be
expressed in the form f =Pf +uQf for some suitable choices of P and Q, as
defined in (1.2), where u is some function taking values in [0, 1].

2.3. Now we are able to proceed to the first interpolation theorem
which is of Marcinkiewicz type.

Weak-Type Theorem 2.3.1. If T is a quasi-linear operator and for all
f # Lqi si

pi ri
we have

&Tf &
q$i s$i
p$i r$i

�Bi & f &qi si
pi ri

, i=0, 1,

then &Tf &q$s$
p$r$�B% & f &qs

pr for all f # Lqs
pr , where B% is a constant depending on

the exponents, q�q$, s�s$, p0< p1 , q0<q1 , q�s$, s�q$, and

1
p

=
1&%

p0

+
%
p1

,
1
r
=

1&%
r0

+
%
r1

,

1
p$

=
1&%

p$0
+

%
p$1

,
1
r$

=
1&%

r$0
+

%
r$1

,

and 0<%<1.

Proof. Using the quasi-linearity of T and Proposition 1.2 we have
&Tf &q$s$

p$r$ � k(&TPf &q$s$
r$r$ + &Tu Qf &q$s$

p$r$) � k� (&P1TPf &p$q$ + &u1Q1TPf &r$s$ +
&P2Tu Qf &p$q$+&u2Q2Tu Qf &r$s$), where Pi and Qi are operators con-
structed as P and Q, respectively and they correspond to the set families
A� i, i=1, 2.

Note that A� 1 is the sequence of sets which corresponds to the function
TPf, i.e., A1

1=[x : |TPf (x)|>(TPf )* (1)] and A1
n=[x : (TPf )* (n&1)�

|TPf (x)|>(TPf )* (n)]. Similarly A� 2 is the sequence of sets which is con-
structed from the function Tu Qf. The functions u1(x) and u2(x) are con-
structed analogously to u(x); i.e. u1(x)=0 if x # Ai

1 and u1(x)=TPf (x)�a� 1
2
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if x # A1
n+1 , where a� 1

n=�A� 1
n

TPf d+ and u2(x)=Tu(x) Qf (x)�a� 2
n if x # A2

n+1 ,
where a� 2

n=�A� 2
n

Tu(x) Qf (x) d+.
Observe that u1 and u2 are functions taking values in [0, 1]. Using the

observation at the beginning of 2.2 and the fact that u(x)�1 and ui (x)�1
it is easy to see that P1 TP and P2 TuQ are quasi-linear operators from Lpi qi

to Lpi$qi$
and Q1 TP and Q2 TuQ are quasi-linear operators from Lri si to Lri$ si$

for i=0, 1.
So by Hunt's weak-type interpolation theorem (see [8]) we obtain

&P1 TPf &p$q$�H% & f &pq

&P2 Tu Qf &p$q$�J% & f &rs

&Q1TPf &r$s$�L% & f &pq

&Q2 Tu Qf &r$s$�K% & f &rs .

Hence &Tf &q$s$
p$r$�C%[& f &pq+& f &rs]. Using again Proposition 1.2 we have

the desired result. Here we would like to inform the reader that these two
theorems can also be perhaps more easily understood and more easily
proved in a general context of interpolation theory, as for example in
[9, 10].

Strong-Type-Theorem 2.3.2. Suppose T is a sublinear operator such
that

&Tf &qi si
pi ri

�Bi & f &
qi$ si$
pi$ri$

, i=0, 1.

Then &Tf &q
p

s
r�B% & f &q$

p$
s$
r$ , where

1
p

=
1&%

p0

+
%
p1

,
1
r
=

1&%
r0

+
%
r1

,

1
p$

=
1&%

p$0
+

%
p$1

,
1
r$

=
1&%

r$0
+

%
r$1

,

1
q

=
1&%

q0

+
%
q1

,
1
s
=

1&%
s0

+
%
s1

,

1
q$

=
1&%

q$0
+

%
q$1

,
1
s$

=
1&%

s$0
+

%
si

, 0<%<1.

For the proof of the above theorem we follow the proof of the weak-type
interpolation theorem using the strong-type interpolation theorem of Hunt
(see [8]) in the place of the weak-type one.
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3. A Convolution Theorem on Lq1 q2
p1 p2

3.1. Suppose G is locally compact unimodular connected Lie group and
+ is a Haar measure on G. The convolution of two functions f and g is
defined by f *g(x)=�G f ( y) g(xy&1) d+( y) provided that the integral exists.
So we have the following

Theorem 3.1. & f *g&q1 q2
p1 p2

�B & f &
q$1 q$2
p$1 p$2

&g&
q"1 q"2
p"1 p"2

, where B is constant and

1
p1

=
1
p$1

+
1
p"1

&1,
1
q1

=
1
q$1

+
1
q"1

�1,

1
p2

=
1
p$2

+
1
p"2

&1,
1
q2

=
1
q$2

+
1
q"2

�1

for 1< p1 , p2 , p$1 , p$2 , p"1 , p"2<�.

Proof. Using Ho� lder's inequality, it can be shown that Lq1 q2
p1 p2

have the
multplicative property, i.e.,

& fg&q1 q2
p1 p2

�c & f &
q$1 q$2
p$1 p$2

&g&
q"1 q"2
p"1 p"2

,

where

1
p1

=
1
p$1

+
1
p"1

,
1
p2

=
1
p$2

+
1
p"2

,

1
q1

=
1
q$1

+
1
q"1

,
1
q2

=
1
q$2

+
1
q"2

.

Moreover, it is true that

& f *g&�
p1

�
p2

�c & f &1 &g&�
p1*

�
2*

, 1< p1 , p2<�, (3.1.1)

and

& f *g&��c & f &1
p$1

1
p$2

&g&�
p1

�
p2

, 1< p1 , p2<�, (3.1.2)

where

1
p1

+
1

p1*
=1 and

1
p2

+
1
p*2

=1.

Applying the weak-type interpolation theorem to (3.1.1) and (3.1.2). We
have that

& f *g&
q$1 q$2
p1 p2

�c & f &
q$1 q$2
p$1 p$2

&g&�
p"1

�
p"2

, (3.1.3)
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where

1
p1

=
1
p$1

+
1
p"1

&1<1,
1
p2

=
1
p$2

+
1
p"2

&1<1, 1�q$1 , q$2��

and

1< p$1 , p$2 , p"1 , p"2<�.

By Proposition 1.5.1 we have that

& f *g&1
p1

1
p2

= sup
&h&

� �
p� 1 p� 2

<1

B | ( f *g)(x) h(x) d+(x),

where

1�p1+1�p� 1=1 and 1�p2+1�p� 2=1, &h&�1;

i.e., h*(t)�t1�p1
&1

if t�1 and h*(t)�t1�p2
&1

if t�1.
Let I(h) � (f *g)(x) h(x) d+(x); then

|I(h)|�| \| | f ( y)| | g(xy&1)| d+( y)+ |h(x)| d+(x)

=| | f ( y)| \| |g(xy&1)| d+( y)+ |h(x)| d+(x).

Hence, |I(h)|�& fk&1 , where k( y)=� |g(xy&1)| |h(x)| d+(x).
From the multiplication theorem it follows that |I(h)|�

B & f &
q$1 q$2
p$1 p$2

&k&q1*
*

q2*
k , where

1
p$1

+
1
*

=
1
p$2

+
1
k

=1,
1
q$1

+
1

q1*
=1,

1
q$2

+
1

q2*
=1.

But k=|g� |
*

|h|, where g� (x)= g(x&1). Hence by (3.1.3) we have &k&
q1*
*

q2*
k �

B &g&
q1* q2*
p"1 p"2

&h&�
p� 1

�
p� 2 �B &g� &q1* q2*

p"1 p"2
, where

1
p� 1

=2&
1
p$1

&
1
p"1

and
1
p� 2

=2&
1
p$2

&
1
p"2

.

Since (G, d+) is unimodular, we have g� &*(t)= g*(t) and this gives

& f *g&1
p1

1
p2

�B & f &
q$1 q$2
q$1 p$2

&g&
q"1 q"2
p"1 p"2

, (3.1.4)
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where

1
p1

=
1
p$1

+
1
p"1

&1<1,
1
p2

=
1
p$2

+
1
p"2

&1<1,

1
q$1

+
1

q1*
=1,

1
q$2

+
1

q2*
=1

for 1<p$1 , p"1 , p$2 , p"2<�. Finally, using the strong-type interpolation
theorem in (3.1.3) and (3.1.4) we obtain Theorem 3.1.

The referee was kind enough to show me an alternative proof of the
above theorem. The proof is more direct but uses ideas that are more
sophisticated and are inspired from R. O'Neil's work [15].

3.2. Proof of Theorem 0. We shall need the following estimates for the
heat kernel pt(x) which can be found in [12]. Let us use the notation
|x|=d(e, x). Then if G has polynomial volume growth then there are con-
stants c1 , c2 , c3 , c4>0 such that

c1 V(t)&1�2 e&|x|2�c2 t� pt(x)�c3 V(t)&1�2 e&|x|2�c3 t. (3.2.1)

If G has exponential volume growth, then (3.2.1) is still valid for 0�t�1
and for t>1 we have that for \N>0 there are again constants c3 , c4>0
such that

pt(x)�c3 t&N�2e&|x|2�c4 t (3.2.2)

Let us recall that there is c>0 such that

c&1tD�V(t)�ctD, t�1, (3.2.3)

when G has polynomial volume growth, that V(t)�c1 ec2 t for c1 , c2>0 and
t�1 when G has exponential volume growth and that for small t we have

c&1t�V(t)�ctd, 0<t<1, (3.2.4)

regardless of the volume growth of the group G. Putting (0.4.2), (3.2.1),
(3.2.3), and (3.2.4) we get that, when G has polynomial volume growth,

Ka(x)�|
1

0
c1 t&a�2&1&d�2e&|x|2�c2 t dt+|

�

1
c3 t&a�2&1&D�2e&|x|2�c4 t dt
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and from this by an easy calculation that

Ka(x)�{
x

|x| d&a ,

c
|x|D&a ,

|x|�1

|x|�1,

which in term gives that

Ka*(x)�{ csa&d,
csa&D,

0<s�1
c�1,

where K a*(x) is the rearrangment function of Ka(x). From the above we
have that Ka(x) # Lq"1 q"2

p"1 p"2
if p"1 # 1�(d&a) and p"2 # 1�(D&a), which with con-

volution theorem proves Theorem 0 when G has polynomial volume
growth.

Similarly, when G has exponential volume growth, (0.4.2), (3.2.1),
(3.2.2), and (3.2.4) give that for \N>0 Ka(x) # Lq"1 q"2

p"1 p"2
. If p"1�1�(d&a) and

p"2�1�(N&a) which with convolution theorem (3.1) proves Theorem 0 for
this case.
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